If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-43x-30=0
a = 10; b = -43; c = -30;
Δ = b2-4ac
Δ = -432-4·10·(-30)
Δ = 3049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-\sqrt{3049}}{2*10}=\frac{43-\sqrt{3049}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+\sqrt{3049}}{2*10}=\frac{43+\sqrt{3049}}{20} $
| 30+5*x=50 | | 2*x-30=-22 | | 6q-8=9q-31 | | n×-5=9 | | X^3+4x+34=81 | | 6x=5=20 | | 7x3=58= | | /2/5)x=1 | | Bx3=27 | | 2(a-5=40 | | 2x11=-45-6x | | 10x+7=-73 | | x-15098.35=0.05x | | x·3+24=45 | | 5x+11=7x+16 | | n/12=15/16 | | 3x²+10x=0 | | 80-12.t=38 | | 2x+147x-65x+12=x | | 9=4{c-2} | | 6b=40-100-b | | 6u-7=59 | | x/2−1=3−/x5 | | 7a+8=5a+20 | | 5−x10=12 | | 9d-22=6+18 | | 5n-34=3n+6 | | Y=3t=14 | | 4x-2=6-x | | 3x/2+x/4-3=6-4x | | -7x+15=-50 | | 2-8k=66 |